
1

Chapter 8: Central Processing Unit

2

CENTRAL PROCESSING UNIT

• Introduction

• General Register Organization

• Stack Organization

• Instruction Formats

• Addressing Modes

• Data Transfer and Manipulation

• Program Control

• Reduced Instruction Set Computer (RISC)

3

MAJOR COMPONENTS OF CPU

Storage Components:
Registers
Flip-flops

Execution (Processing) Components:
Arithmetic Logic Unit (ALU):
Arithmetic calculations, Logical computations, Shifts/Rotates

Transfer Components:
Bus

Control Components:
Control Unit

Register
File ALU

Control Unit

4

GENERAL REGISTER ORGANIZATION

MUXSELA{ MUX } SELB

ALUOPR

R1

R2

R3

R4

R5

R6

R7

Input

3 x 8
decoder

SELD

Load
(7 lines)

Output

A bus B bus

Clock

5

OPERATION OF CONTROL UNIT
The control unit directs the information flow through ALU by:

- Selecting various Components in the system

- Selecting the Function of ALU

Example: R1 <- R2 + R3
[1] MUX A selector (SELA): BUS A R2
[2] MUX B selector (SELB): BUS B R3
[3] ALU operation selector (OPR): ALU to ADD
[4] Decoder destination selector (SELD): R1 Out Bus

Control Word

Encoding of register selection fields
Binary
Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

SELA SELB SELD OPR

3 3 3 5

6

ALU CONTROL

Encoding of ALU operations OPR
Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 ADD A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Examples of ALU Microoperations

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

Control

R1 R2 - R3 R2 R3 R1 SUB 010 011 001 00101

R4 R4 R5 R4 R5 R4 OR 100 101 100 01010

R6 R6 + 1 R6 - R6 INCA 110 000 110 00001

R7 R1 R1 - R7 TSFA 001 000 111 00000

Output R2 R2 - None TSFA 010 000 000 00000

Output Input Input - None TSFA 000 000 000 00000

R4 shl R4 R4 - R4 SHLA 100 000 100 11000

R5 0 R5 R5 R5 XOR 101 101 101 01100

7

REGISTER STACK ORGANIZATION

Register Stack

Push, Pop operations

/* Initially, SP = 0, EMPTY = 1, FULL = 0 */

PUSH POP
SP SP + 1 DR M[SP]

M[SP] DR SP SP - 1

If (SP = 0) then (FULL 1) If (SP = 0) then (EMPTY 1)

EMPTY 0 FULL 0

Stack
- Very useful feature for nested subroutines, nested loops control
- Also efficient for arithmetic expression evaluation
- Storage which can be accessed in LIFO
- Pointer: SP
- Only PUSH and POP operations are applicable

A

B

C

0

1

2

3

4

63

Address

FULL EMPTY

SP

DR

Flags

Stack pointer

stack

8

MEMORY STACK ORGANIZATION

- A portion of memory is used as a stack with a
processor register as a stack pointer

- PUSH: SP SP - 1
M[SP] DR

- POP: DR M[SP]
SP SP + 1

- Most computers do not provide hardware to check
stack overflow (full stack) or underflow(empty stack)

Memory with Program, Data,
and Stack Segments

DR

4001
4000

3999
3998
3997

3000

Data
(operands)

Program
(instructions)

1000

PC

AR

SP
stack

9

REVERSE POLISH NOTATION

A + B Infix notation
+ A B Prefix or Polish notation
A B + Postfix or reverse Polish notation

- The reverse Polish notation is very suitable for stack
manipulation

Evaluation of Arithmetic Expressions

Any arithmetic expression can be expressed in parenthesis-free
Polish notation, including reverse Polish notation

(3 * 4) + (5 * 6) 3 4 * 5 6 * +

Arithmetic Expressions: A + B

3 3 12 12 12 12 42

4 5 5

6

30

3 4 * 5 6 * +

10

INSTRUCTION FORMAT

OP-code field - specifies the operation to be performed

Address field - designates memory address(s) or a processor register(s)
Mode field - specifies the way the operand or the

effective address is determined

The number of address fields in the instruction format
depends on the internal organization of CPU

- The three most common CPU organizations:

Instruction Format

Single accumulator organization:

ADD X /* AC AC + M[X] */

General register organization:

ADD R1, R2, R3 /* R1 R2 + R3 */

ADD R1, R2 /* R1 R1 + R2 */

MOV R1, R2 /* R1 R2 */

ADD R1, X /* R1 R1 + M[X] */

Stack organization:

PUSH X /* TOS M[X] */

ADD

Instruction Fields

11

Three-Address Instructions:

Program to evaluate X = (A + B) * (C + D) :

ADD R1, A, B /* R1 M[A] + M[B] */

ADD R2, C, D /* R2 M[C] + M[D] */

MUL X, R1, R2 /* M[X] R1 * R2 */

- Results in short programs
- Instruction becomes long (many bits)

Two-Address Instructions:

Program to evaluate X = (A + B) * (C + D) :

MOV R1, A /* R1 M[A] */
ADD R1, B /* R1 R1 + M[B] */
MOV R2, C /* R2 M[C] */
ADD R2, D /* R2 R2 + M[D] */
MUL R1, R2 /* R1 R1 * R2 */
MOV X, R1 /* M[X] R1 */

THREE, and TWO-ADDRESS INSTRUCTIONS

12

ONE, and ZERO-ADDRESS INSTRUCTIONS
One-Address Instructions:

- Use an implied AC register for all data manipulation
- Program to evaluate X = (A + B) * (C + D) :

LOAD A /* AC M[A] */
ADD B /* AC AC + M[B] */
STORE T /* M[T] AC */
LOAD C /* AC M[C] */
ADD D /* AC AC + M[D] */
MUL T /* AC AC * M[T] */
STORE X /* M[X] AC */

Zero-Address Instructions:
- Can be found in a stack-organized computer
- Program to evaluate X = (A + B) * (C + D) :

PUSH A /* TOS A */
PUSH B /* TOS B */
ADD /* TOS (A + B) */
PUSH C /* TOS C */
PUSH D /* TOS D */
ADD /* TOS (C + D) */
MUL /* TOS (C + D) * (A + B) */
POP X /* M[X] TOS */

13

ADDRESSING MODES

Addressing Modes:

* Specifies a rule for interpreting or modifying the
address field of the instruction (before the operand
is actually referenced)

* Variety of addressing modes

- to give programming flexibility to the user
- to use the bits in the address field of the
instruction efficiently

14

TYPES OF ADDRESSING MODES
Implied Mode

Address of the operands are specified implicitly
in the definition of the instruction
- No need to specify address in the instruction
- EA = AC, or EA = Stack[SP], EA: Effective Address.

Immediate Mode
Instead of specifying the address of the operand,
operand itself is specified
- No need to specify address in the instruction

- However, operand itself needs to be specified
- Sometimes, require more bits than the address
- Fast to acquire an operand

Register Mode
Address specified in the instruction is the register address

- Designated operand need to be in a register
- Shorter address than the memory address
- Saving address field in the instruction
- Faster to acquire an operand than the memory addressing
- EA = IR(R) (IR(R): Register field of IR)

15

TYPES OF ADDRESSING MODES

Register Indirect Mode
Instruction specifies a register which contains
the memory address of the operand
- Saving instruction bits since register address
is shorter than the memory address

- Slower to acquire an operand than both the
register addressing or memory addressing

- EA = [IR(R)] ([x]: Content of x)

Auto-increment or Auto-decrement features:
Same as the Register Indirect, but:
- When the address in the register is used to access memory, the
value in the register is incremented or decremented by 1 (after or
before the execution of the instruction)

16

TYPES OF ADDRESSING MODES

Direct Address Mode

Instruction specifies the memory address which

can be used directly to the physical memory

- Faster than the other memory addressing modes

- Too many bits are needed to specify the address

for a large physical memory space

- EA = IR(address), (IR(address): address field of IR)

Indirect Addressing Mode
The address field of an instruction specifies the address of a memory
location that contains the address of the operand
- When the abbreviated address is used, large physical memory can
be addressed with a relatively small number of bits

- Slow to acquire an operand because of an additional memory
access

- EA = M[IR(address)]

17

TYPES OF ADDRESSING MODES

Relative Addressing Modes

The Address fields of an instruction specifies the part of the address

(abbreviated address) which can be used along with a

designated register to calculate the address of the operand

PC Relative Addressing Mode(R = PC)

- EA = PC + IR(address)

- Address field of the instruction is short
- Large physical memory can be accessed with a small number of

address bits

Indexed Addressing Mode
XR: Index Register:

- EA = XR + IR(address)
Base Register Addressing Mode

BAR: Base Address Register:
- EA = BAR + IR(address)

18

ADDRESSING MODES - EXAMPLES

Addressing
Mode

Effective
Address

Content
of AC

Direct address 500 /* AC (500) */ 800
Immediate operand - /* AC 500 */ 500
Indirect address 800 /* AC ((500)) */ 300
Relative address 702 /* AC (PC+500) */ 325
Indexed address 600 /* AC (XR+500) */ 900
Register - /* AC R1 */ 400
Register indirect 400 /* AC (R1) */ 700
Autoincrement 400 /* AC (R1)+ */ 700
Autodecrement 399 /* AC -(R) */ 450

Load to AC Mode

Address = 500

Next instruction

200

201

202

399

400

450

700

500 800

600 900

702 325

800 300

MemoryAddress

PC = 200

R1 = 400

XR = 100

AC

19

DATA TRANSFER INSTRUCTIONS

Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output OUT
Push PUSH
Pop POP

Name Mnemonic

Typical Data Transfer Instructions

Direct address LD ADR AC M[ADR]

Indirect address LD @ADR AC M[M[ADR]]

Relative address LD $ADR AC M[PC + ADR]
Immediate operand LD #NBR AC NBR

Index addressing LD ADR(X) AC M[ADR + XR]

Register LD R1 AC R1
Register indirect LD (R1) AC M[R1]

Autoincrement LD (R1)+ AC M[R1], R1 R1 + 1
Autodecrement LD -(R1) R1 R1 - 1, AC M[R1]

Mode
Assembly
Convention Register Transfer

Data Transfer Instructions with Different Addressing Modes

20

DATA MANIPULATION INSTRUCTIONS
Three Basic Types: Arithmetic instructions

Logical and bit manipulation instructions
Shift instructions

Arithmetic Instructions
Name Mnemonic

Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotate right thru carry RORC
Rotate left thru carry ROLC

Name Mnemonic

Logical and Bit Manipulation Instructions Shift Instructions

Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with Carry ADDC
Subtract with Borrow SUBB
Negate(2’s Complement) NEG

21

PROGRAM CONTROL INSTRUCTIONS

PC

+1
In-Line Sequencing
(Next instruction is fetched from the
next adjacent location in the memory)

Address from other source; Current Instruction, Stack, etc
Branch, Conditional Branch, Subroutine, etc

Program Control Instructions
Name Mnemonic
Branch BR
Jump JMP
Skip SKP
Call CALL
Return RTN
Compare(by -) CMP
Test (by AND) TST

* CMP and TST instructions do not retain their
results of operations(- and AND, respectively).
They only set or clear certain Flags.

Status Flag Circuit

c7

c8

A B
8 8

8-bit ALU

V Z S C
F7

F7 - F0

8

F

Check for
zero output

22

CONDITIONAL BRANCH INSTRUCTIONS

BZ Branch if zero Z = 1
BNZ Branch if not zero Z = 0
BC Branch if carry C = 1
BNC Branch if no carry C = 0
BP Branch if plus S = 0
BM Branch if minus S = 1
BV Branch if overflow V = 1
BNV Branch if no overflow V = 0

BHI Branch if higher A > B
BHE Branch if higher or equal A B
BLO Branch if lower A < B
BLOE Branch if lower or equal A B
BE Branch if equal A = B
BNE Branch if not equal A B

BGT Branch if greater than A > B
BGE Branch if greater or equal A B
BLT Branch if less than A < B
BLE Branch if less or equal A B
BE Branch if equal A = B
BNE Branch if not equal A B

Unsigned compare conditions (A - B)

Signed compare conditions (A - B)

Mnemonic Branch condition Tested condition

23

SUBROUTINE CALL AND RETURN
Call subroutine
Jump to subroutine
Branch to subroutine
Branch and save return address

• Fixed Location in the subroutine(Memory)
• Fixed Location in memory
• In a processor Register
• In a memory stack

- most efficient way

SUBROUTINE CALL

Two Most Important Operations are Implied;

* Branch to the beginning of the Subroutine
- Same as the Branch or Conditional Branch

* Save the Return Address to get the address
of the location in the Calling Program upon
exit from the Subroutine

- Locations for storing Return Address: CALL
SP SP - 1
M[SP] PC
PC EA

RTN
PC M[SP]
SP SP + 1

24

PROGRAM INTERRUPT
Types of Interrupts:

External interrupts
External Interrupts initiated from the outside of CPU and Memory
- I/O Device -> Data transfer request or Data transfer complete
- Timing Device -> Timeout
- Power Failure

Internal interrupts (traps)
Internal Interrupts are caused by the currently running program
- Register, Stack Overflow
- Divide by zero
- OP-code Violation
- Protection Violation

Software Interrupts
Both External and Internal Interrupts are initiated by the computer Hardware.
Software Interrupts are initiated by texecuting an instruction.
- Supervisor Call -> Switching from a user mode to the supervisor mode

-> Allows to execute a certain class of operations
which are not allowed in the user mode

25

INTERRUPT PROCEDURE

- The interrupt is usually initiated by an internal or
an external signal rather than from the execution of
an instruction (except for the software interrupt)

- The address of the interrupt service program is
determined by the hardware rather than from the

address field of an instruction

- An interrupt procedure usually stores all the
information necessary to define the state of CPU

rather than storing only the PC.

The state of the CPU is determined from;

Content of the PC
Content of all processor registers
Content of status bits

Many ways of saving the CPU state depending on the CPU architectures

Interrupt Procedure and Subroutine Call

26

RISC: REDUCED INSTRUCTION SET

COMPUTERSHistorical Background

IBM System/360, 1964

- The real beginning of modern computer architecture
- Distinction between Architecture and Implementation
- Architecture: The abstract structure of a computer

seen by an assembly-language programmer

High-Level
Language

Instruction
Set

Hardware

Compiler -program

Architecture Implementation

Continuing growth in semiconductor memory and microprogramming
-> A much richer and complicated instruction sets

=> CISC(Complex Instruction Set Computer)

- Arguments advanced at that time
Richer instruction sets would simplify compilers
Richer instruction sets would alleviate the software crisis

- move as much functions to the hardware as possible
- close Semantic Gap between machine language

and the high-level language
Richer instruction sets would improve the architecture quality

27

COMPLEX INSTRUCTION SET COMPUTERS:

CISC

High Performance General Purpose Instructions

Characteristics of CISC:

1. A large number of instructions (from 100-250 usually)
2. Some instructions that performs a certain tasks are not used frequently.
3. Many addressing modes are used (5 to 20)
4. Variable length instruction format.
5. Instructions that manipulate operands in memory.

28

PHYLOSOPHY OF RISC

Reduce the semantic gap between
machine instruction and microinstruction

1-Cycle instruction

Most of the instructions complete their execution
in 1 CPU clock cycle - like a microoperation

* Functions of the instruction (contrast to CISC)
- Very simple functions
- Very simple instruction format
- Similar to microinstructions
=> No need for microprogrammed control

* Register-Register Instructions
- Avoid memory reference instructions except

Load and Store instructions
- Most of the operands can be found in the

registers instead of main memory
=> Shorter instructions
=> Uniform instruction cycle
=> Requirement of large number of registers

* Employ instruction pipeline

29

CHARACTERISTICS OF RISC
Common RISC Characteristics

- Operations are register-to-register, with only LOAD and
STORE accessing memory

- The operations and addressing modes are reduced

Instruction formats are simple

30

CHARACTERISTICS OF RISC
RISC Characteristics

- Relatively few instructions
- Relatively few addressing modes
- Memory access limited to load and store instructions
- All operations done within the registers of the CPU
- Fixed-length, easily decoded instruction format
- Single-cycle instruction format
- Hardwired rather than microprogrammed control

-A relatively large numbers of registers in the processor unit.
-Efficient instruction pipeline
-Compiler support: provides efficient translation of high-level language

programs into machine language programs.

More RISC Characteristics

Advantages of RISC

- VLSI Realization
- Computing Speed
- Design Costs and Reliability
- High Level Language Support

